
AN ELECTRONIC JOURNAL OF THE

SOCIETAT CATALANA DE MATEMÀTIQUES
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Resum (CAT)
En aquest article presentem una demostració del problema de la torre de cossos

de classes. Comencem introduint els grups pro-p, expliquem com descriure’ls en

termes de generadors i relacions, i presentem la desigualtat de Golod–Shafarevich,

la qual estableix un criteri perquè un grup pro-p sigui infinit. Després d’introduir

algunes nocions de teoria algebraica de nombres, apliquem la desigualtat de

Golod–Shafarevich al problema de la torre de cossos de classes. Obtenim un criteri

perquè un cos de nombres tingui una torre de cossos de classes infinita, i donem

exemples expĺıcits de cossos de nombres satisfent aquest criteri.

Abstract (ENG)
In this article we present a proof of the class field tower problem. We begin by

introducing pro-p groups, explain how to describe them in terms of generators and

relations, and present the Golod–Shafarevich inequality, which establishes a criterion

for a pro-p group to be infinite. After introducing some notions from algebraic

number theory, we apply the Golod–Shafarevich inequality to the class field tower

problem. We obtain a criterion for a number field to have an infinite class field

tower, and give explicit examples of number fields satisfying this criterion.
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1. Introduction

During the 19th century, class field theory developed around three main themes: relations between abelian
extensions and ideal class groups, density theorems for primes using L-functions, and reciprocity laws. As
explained in [6], the need to study class field towers originated with the only conjecture of Hilbert concerning
the Hilbert class field which turned out to be incorrect, namely the claim that the Hilbert class field of a
number field with class number 4 has odd class number.

In 1916, Philipp Furtwängler realized that the Hilbert 2-class field H(2)(K ) of a number field K with
2-class group isomorphic to Z/2Z × Z/2Z need not have odd class number. He observed that Hilbert’s
method to prove the quadratic reciprocity law in K would still work if the 2-class field H2

(2)(K ) of H(2)(K )
had odd class number. This made Furtwängler ask the following question: does the p-class field tower of
a number field K always terminate?

A negative answer to that question would solve the class field tower problem, which asks whether the
class field tower of any number field always terminates. This problem was posed by Furtwängler in 1925
and remained open for almost 40 years, with no clear indication whether the answer should be positive or
negative. By class field theory, this problem is equivalent to the following question: Given a number field K,
does it always exist a finite extension L of K such that the ring of integers of L is a principal ideal domain?.

The class field tower problem could be solved by finding a number field K whose maximal unramified
prosolvable extension has infinite degree over K . A convenient way to construct such K would be to
prove that for some prime p, the maximal unramified pro-p extension H∞

p (K ) of K has infinite degree, or
equivalently, that the Galois group GK ,p := Gal(H∞

p (K )/K ) is infinite.

A major evidence for the negative answer to the class field tower problem was given by Igor Shafarevich
in 1963 (see [9]), where the formula for the minimal number of generators d(GK ,p) of GK ,p and an upper
bound for the minimal number of relations r(GK ,p) were established. A year later, in 1964, Golod and
Shafarevich (see [3]) were able to produce counterexamples for the p-class field tower problem by showing
that for any finite p-group G , the minimal numbers of generators d(G ) and relations r(G ) (where G is
considered as a pro-p group) are related by the inequality r(G ) > (d(G ) − 1)2/4. This was improved
to r(G ) > d(G )2/4 in the subsequent works of Vinberg (see [10]) and Roquette (see [8]). This inequality is
known as the Golod–Shafarevich inequality. Golod and Shafarevich applied this inequality to GK ,p, that is
by definition a pro-p group, and use this to obtain a criterion for the p-class field tower of K to be infinite.

The aim of this article is to present a proof of the class field tower problem, as well as provide the
necessary framework to be able to formulate this problem and solve it. We begin with a brief introduction
to pro-p groups that lead to the formulation of the Golod–Shafarevich inequality, following [5] as the main
reference. We then introduce some notions from algebraic number theory and class field theory, based
on [7], [4] and [1]. We conclude by explaining the solution to the class field tower problem, giving some
particular counterexamples of number fields with an infinite class field tower. Most of the results in this
last part are taken from [2].

2. The Golod–Shafarevich inequality

Definition 2.1. A profinite group is a topological group that can be realized as a projective limit of discrete
finite groups.
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These groups have an important role in number theory, as Galois groups of algebraic field extensions
are always profinite. We are interested in a particular type of profinite groups, called pro-p groups, which
are those profinite groups that can be realized as an inverse limit of finite p-groups. These groups describe
the Galois groups of p-extensions.

Definition 2.2. Let G be a pro-p group. A system of generators of G is a subset E ⊆ G with the following
properties:

(i) G is the smallest closed subgroup containing E ,

(ii) every neighborhood of 1 ∈ G contains all but finitely many elements of E .

We say E is minimal if no proper subset of E is a system of generators of G .

As when working with regular groups, we can define an analog of a free group and express a pro-p
group in terms of generators and relations.

Definition 2.3. Let I be an index set and let FI be the free group with generators {si | i ∈ I}. Let U be
the set of all normal subgroups N of FI satisfying that

(i) [FI : N] is a power of p,

(ii) almost all elements of {si | i ∈ I} are in N.

We define the free pro-p group with system of generators {si | i ∈ I} as

F (I ) := lim←−
N∈U

FI/N.

The group FI embeds into F (I ) by g 7→
∏

gN, and the image of FI is dense in F (I ). Through this
embedding, the set {si | i ∈ I} is in fact a minimal system of generators of F (I ).

Example 2.4. Let I = {1}. Then FI = Z and the subgroups N ∈ U in this case are precisely the
subgroups Z/pnZ. Thus, the free pro-p group generated by a singleton is

F ({1}) = lim←−
n≥0

Z/pnZ = Zp.

We say that 1 is a topological generator of Zp, since {1} is a system of generators of this pro-p group
as defined above. Nevertheless, observe that 1 does not generate Zp as a group.

Definition 2.5. Let G be a pro-p group and let F (I ) be a free pro-p group with system of generators {si |
i ∈ I}. A presentation of G by F (I ) is an exact sequence of of pro-p groups

1 −−−−→ R −−−−→ F (I )
φ−−−−→ G −−−−→ 1.

We identify R with the corresponding subgroup of F . If {φ(si ) | i ∈ I} is a minimal system of generators
of G , then the presentation is called minimal.
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Definition 2.6. Given a presentation of G as in the previous definition, a subset E ⊆ R is called a system
of relations of G if it satisfies:

(i) R is the smallest normal subgroup of F containing E ,

(ii) every open normal subgroup of R contains almost all elements of E .

We say that E is minimal if no proper subset of E is a system of relations of G .

The first and second cohomology groups of a pro-p group G play a very important role since they
allow us to define two very important invariants. If we consider the trivial action of G on Fp, we can
regard the cohomology groups Hn(G ,Fp) as Fp-vector spaces. Then, we define the generator rank of G
as d(G ) := dimFp(H1(G ,Fp)) and the the relation rank of G as r(G ) := dimFp(H2(G ,Fp)). The name
given to these invariants is justified by the following theorem:

Theorem 2.7. The generator rank of a pro-p group G equals the cardinality of any minimal system of
generators, and the relation rank equals the cardinality of any minimal system of relations.

Observation 2.8. The previous theorem tells us, in particular, that any two minimal systems of generators
have the same cardinality, and so do any two minimal system of relations. Moreover, this last number is
independent of the chosen minimal presentation of G .

One would expect that if the generator rank of G is large compared to the relation rank, then G is
infinite. Indeed, the following theorem establishes a sufficient condition for this to happen:

Theorem 2.9 (Golod–Shafarevich inequality). Let G be a finitely generated pro-p group with d(G ) > 1.
If

d(G )2

4
> r(G ),

then G is infinite.

3. Results from algebraic number theory

3.1 Places of a number field and ramification

Let K be a number field. We denote by OK its ring of integers. For every nonzero prime ideal p of OK

and any real constant c ∈ (0, 1), the function |α|p := cordp(α) for α ∈ K ∗ (and |0|p = 0) defines a non-
Archimedean absolute value on K . We call this a p-adic absolute value. For any two different prime ideals p
and q, a p-adic and a q-adic absolute values are inequivalent, i.e., they generate different topologies.

On the other side, any embedding σ of K into R or C give rise to an Archimedean absolute value
by setting |α|σ = |σ(α)|, where | · | is the usual absolute value on R or C. Two embeddings give rise to
equivalent absolute values if, and only if, they are complex conjugates.

Ostrowski’s theorem tells us that any nontrivial absolute value on K is equivalent to a p-adic absolute
value or to an absolute value coming from a real or complex embedding of K . An equivalence class of
nontrivial absolute values on K is called a place of K . By tradition, a place is called an infinite place if it
contains an Archimedean absolute value, and a finite place otherwise. We shall now describe how places
split when extended to a finite extension L of K . Let’s begin with finite places.
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Every finite place of K can be uniquely identified with a nonzero prime ideal p of OK . We can describe
how a place splits when extended in L by describing how p splits when extended in OL. From now on, the
term “prime ideal” will be used to mean “nonzero prime ideal”.

Fix a prime ideal p of Ok . We denote by pOL the ideal generated by p in OL. If a prime ideal P of OL

divides pOL, we say that P lies over p or that p lies under P. Every prime ideal of OL lies over a unique
prime ideal of OK and every prime ideal of OK lies under at least one prime ideal of OL.

The primes lying over p are exactly the ones which occur in the prime decomposition of pOL. The
exponent with which they occur are called the ramification indices. Thus, if Pe is the exact power of P
dividing pOL, then e is the ramification index of P over p, denoted by e(P|p). We say that p is unramified
if e(P|p) = 1 for all prime ideals P of OL lying over p, and ramified otherwise.

If P is a prime ideal of OL lying over p, the residue field OK/p is canonically embedded into the
residue field OL/P. The degree of this extension is called the inertial degree of P over p, and it is denoted
by f (P|p). The inertial degree is always finite, since it is bounded by [L : K ].

Let’s now describe how infinite places split when extended in a finite extension L of K . An infinite
place ν of K is called a real place if the completion of K with respect to any absolute value contained
in ν is R. Similarly, ν is called a complex place if the completion of K with respect to any absolute value
contained in ν is C. Thus, the real places of K correspond to the distinct embeddings of K into R and
the complex places correspond to the conjugate pairs of embeddings of K into C. We will describe how
ν splits when extended in L by describing how its corresponding embedding can be extended to different
embeddings of L into R or C.

Consider first that ν is a complex place of K and let σ : K ↪→ C be an embedding of K into C such that
|σ(x)| is in ν. As C is algebraically closed, we know from Galois theory that there are exactly n = [L : K ]
different embeddings σi : L ↪→ C such that σi |K = σ. No two σi can be conjugates, as then they would
not agree on K . Hence, they represent n distinct complex infinite places ω1, ... ,ωn of L. We can write

ν = ω1 · · ·ωn

to indicate that the ωi are the places of L extending ν. In this case, we define the ramification indices e(ωi |ν)
and the inertial degrees f (ωi |ν) to be one, and we say that the complex place ν is unramified in L.

Consider now that ν is a real place of K and let σ : K ↪→ R be the corresponding embedding. Regarding
σ as an embedding from K into C, we can apply Galois theory again to assure the existence of exactly
n = [L : K ] different extensions of σ to L, some of which may have an image inside R. List the extensions
of σ as

σ1, ... ,σr ,σr+1,σr+1, ... ,σr+s ,σr+s ,

where σi (L) ⊂ R for 1 ≤ i ≤ r and σr+j , σr+j give s pairs of complex conjugate embeddings of L
into C. Note that r + 2s = n. This give rise to r distinct real places ω1, ... ,ωr and s distinct complex
places ωr+1, ... ,ωr+s of L extending ν. We define the ramification indices as follows: if ωi is a real place
of L lying over ν, we set e(ωi |ν) = 1. If ωr+j is a complex place, we set e(ωr+j |ν) = 2. We define all
inertial degrees to be one. Thus, we formally write

ν = ω1 · · ·ωrω
2
r+1 · · ·ω2

r+s .

Definition 3.1. We say that an extension of number fields L/K is unramified if every place of K (finite
and infinite) is unramified in L. More generally, if S is a set of places of K , we say that L/K is unramified
outside S if all places of K not belonging to S are unramified in L.
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Galois theory can be applied to the general problem of determining how places of a number field split
in an extension field, as there are connections between the ramification indices and the inertial degrees
introduced before with some subgroups of the Galois group of a given extension. The following theorem
tells us that unramified Galois extensions remain unramified after lifting:

Theorem 3.2. Let L/K be an unramified Galois extension of number fields and F a finite extension of K.
Then LF/F is unramified.

A similar property holds for the compositum of unramified Galois extensions:

Theorem 3.3. Let L/K and F/K be Galois extensions of number fields. Let S be a set of places of K.
Suppose L/K and F/K are unramified outside S. Then, LF/K is also unramified outside S.

Applying this theorem to S = ∅ we obtain the following result:

Corollary 3.4. Let L/K and F/K be unramified Galois extensions of number fields. Then, LF/K is
unramified.

3.2 The Hilbert class field

For a number field K , we denote by Cl(K ) the class group of K , i.e., the quotient group of the fractional
ideals of OK by its subgroup of principal ideals. Its cardinality is known as the class number of K , and it
is always finite.

In 1898, Hilbert stated the following conjecture:

Conjecture 3.5. For any number field K there is a unique finite extension L such that

(i) L/K is Galois and Gal(L/K ) ∼= Cl(K ).

(ii) L/K is unramified, and every abelian unramified extension of K is a subfield of L.

(iii) For every finite place p of K, the inertial degree f (P|p) (for any place P of L lying over p) is the
order of p in Cl(K ).

(iv) Every ideal of OK becomes principal in OL.

Hilbert proved the existence of such extension when the class number was 2 and [K : Q] = 2. In 1907,
Philipp Furtwängler proved the first two parts of Hilbert’s conjecture in general, and used this to prove the
quadratic reciprocity law in all number fields in 1913. He proved the third part in 1911 and the fourth part
in 1930, after Artin reduced it to a purely group-theoretic statement.

Property (ii) is normally used to characterize this extension:

Definition 3.6. Let K be a number field. The Hilbert class field of K , denoted by H(K ), is the maximal
unramified abelian extension of K .
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4. The class field tower problem

We begin by formulating the following problem:

Problem 4.1 (Embeddability problem). Given a number field K, does it always exist a finite extension L
of K such that the OL is a principal ideal domain?

If K is a number field, the extent to which OK fails to be a PID is measured by the class group Cl(K ).
In particular, OK is a PID if, and only if, Cl(K ) is trivial. As explained in the previous section, the class
group of K is isomorphic to the Galois group Gal(H(K )/K ). Thus, OK is a PID if, and only if, the Hilbert
class field of K is K itself. This brings us to consider another problem. To state it, we need the following
definition:

Definition 4.2. The class field tower of K is the tower of extensions

K = H0(K ) ⊆ H1(K ) ⊆ H2(K ) ⊆ · · · ,

where Hm(K ) is the Hilbert class field of Hm−1(K ). We say that the class field tower is finite if it stabilizes
at some point.

Problem 4.3 (Class field tower problem). Is the class field tower of any number field K always finite?

The two previous problems are equivalent in the following sense:

Lemma 4.4. Let K be a number field. Then, the class field tower of K is finite if, and only if, there exists
a finite extension L/K with Cl(L) = {1}.

Proof. Assume that the class field tower is finite. Then, there exists m ∈ N with H(Hm(K )) = Hm(K )
and hence Cl(Hm(K )) = {1}. Since the Hilbert class field of any number field is a finite extension of itself,
Hm(K )/K is finite.

Assume now that L is a finite extension of K with trivial class group and consider the tower of extensions

L = LK ⊆ LH1(K ) ⊆ LH2(K ) ⊆ · · · ,

which is obtained by lifting the class field tower of K by L. By Theorem 3.2, LHn+1(K )/LHn(K ) is an
abelian unramified extension for every n ∈ N. In particular, LH1(K ) is an abelian unramified extension of L.
But Cl(L) = {1}, so H(L) = L and L does not have nontrivial abelian unramified extensions. This implies
that LH1(K ) = L. Repeating this argument inductively we find that LHn(K ) = L for all n ≥ 0. Since
Hn(K ) ⊆ LHn(K ) = L, every field in the class field tower of K is contained in L. L is a finite extension
of K , so the class field tower of K must be finite.

4.1 A criterion for infinite class field towers

In general, computing the class field of a given number is a rather difficult task. It’s a bit easier to work
with the p-class field, defined in the following:
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Definition 4.5. Let p be a fixed prime number. The p-class field of K , denoted by Hp(K ), is the maximal
unramified Galois extension of K such that the Galois group Gal(Hp(K )/K ) is an elementary abelian
p-group, i.e., an abelian group where every nontrivial element has order p.

Analogously to the class field tower, we define the p-class field tower of K as the tower

K = H0
p(K ) ⊆ H1

p(K ) ⊆ H2
p(K ) ⊆ · · ·

One has that Hn
p(K ) ⊆ Hn(K ). Hence, if the p-class field tower of K is infinite for some prime number p,

then so is its class field tower. For a given p, consider the following extension of K :

H∞
p (K ) :=

⋃
n≥0

Hn
p(K ).

Clearly, the p-class field tower of K is finite if, and only if, H∞
p (K ) is a finite extension of K . Our

goal now will be to give sufficient conditions for H∞
p (K )/K to be infinite. The extension H∞

p (K )/K is
unramified, since all its finite subextensions are. Moreover, it is Galois with Galois group

Gal(H∞
p (K )/K ) = lim←−

n≥0

Gal(Hn
p(K )/K ).

As Gal(Hn
p(K )/K ) are finite p-groups, Gal(H∞

p (K )/K ) is pro-p. In fact, the following theorem holds:

Theorem 4.6. H∞
p (K ) is the maximal unramified pro-p extension of K.

Let GK ,p := Gal(H∞
p (K )/K ). Proving that H∞

p (K )/K is an infinite extension is equivalent to proving
that GK ,p is infinite. Let Fr(GK ,p) be the Frattini subgroup of GK ,p. Then, the quotient GK ,p/Fr(GK ,p),
known as the Frattini quotient, is isomorphic to Gal(Hp(K )/K ).

By the definition of the p-class field of K and Galois theory, Gal(Hp(K )/K ) is the maximal elemen-
tary abelian quotient of Gal(H(K )/K ). The correspondence between subgroups and quotients of a finite
abelian group tells us that Gal(Hp(K )/K ) is isomorphic to the maximal elementary abelian subgroup
of Gal(H(K )/K ), i.e., Gal(H(K )/K )[p]. Taking into account that Gal(H(K )/K ) ∼= Cl(K ), we obtain that

Gal(Hp(K )/K ) ∼= Cl(K )[p].

The generator rank of a pro-p group is the same as the generator rank of its Frattini quotient, and thus

d(GK ,p) = d(GK ,p/Fr(GK ,p)) = d(Gal(Hp(K )/K )) = dimFp(H
1(Cl(K )[p])).

Since Cl(K )[p] is a finite elementary abelian p-group, H1(Cl(K )[p]) ∼= Cl(K )[p]. Let ρp(K ) :=
dimFp(Cl(K )[p]) be the p-rank of the class group of K . Then,

d(GK ,p) = dimFp(H
1(Cl(K )[p])) = dimFp(Cl(K )[p]) = ρp(K ). (1)

The following theorem establishes a relation between the generator and relation ranks of GK ,p and the
number of infinite places of K :
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Theorem 4.7 (Shafarevich). Let K be a number field and ν∞(K ) the number of infinite places of K.
Then, for any prime number p we have

0 ≤ r(GK ,p)− d(GK ,p) ≤ ν∞(K )− 1.

Combining Theorem 4.7 with Theorem 2.9, we obtain the following criterion for the group GK ,p to be
infinite:

Corollary 4.8 (Golod–Shafarevich). In the notations above, assume that

ρp(K ) > 2 + 2
√

ν∞(K ) + 1.

Then GK ,p is infinite.

Proof. By Equation (1), ρp(K ) = d(GK ,p). Rearranging the terms and squaring this inequality we obtain
that

d(GK ,p)
2

4
− d(GK ,p) > ν∞(K ).

Using Theorem 4.7 we deduce that

d(GK ,p)
2

4
> r(GK ,p) + 1.

Hence d(GK ,p) > 1 and d(GK ,p)
2/4 > r(GK ,p). Theorem 2.9 implies the claim.

4.2 Particular examples

To complete the negative solution to the class field tower problem it suffices to exhibit examples of number
fields satisfying the inequality in Corollary 4.8. We will see that for any prime number p and any n ∈ N,
there exist a number field K = K (p, n) such that [K : Q] = p and ρp(K ) ≥ n. Since ν∞(K ) ≤ [K : Q]
(because K has [K : Q] different embedding into C), we can choose any n > 2+ 2

√
p + 1. Then, K (p, n)

will satisfy the inequality in Corollary 4.8 and hence will have an infinite class field tower.

For p = 2, take any n + 1 distinct prime numbers q1, ... , qn+1 congruent to 1 modulo 4. Let K =
Q(
√
q1 · · · qn+1) and L = Q(

√
q1, ... ,

√
qn+1). Notice that [K : Q] = 2. One could see that the ex-

tension L/K is unramified, and hence L ⊆ H(K ). Observe that L is an abelian extension of K with
Galois group isomorphic to (Z/2Z)n. By the correspondence between subgroups and the quotients of
a finite abelian group, Gal(H(K )/K ) must have a subgroup isomorphic to (Z/2Z)n. Thus, ρ2(K ) =
dimF2(Gal(H(K )/K )[2]) ≥ dimF2((Z/2Z)n) = n (it can be shown that, in fact, ρ2(K ) = n). For any
n ≥ 6 > 2 + 2

√
3, by Corollary 4.8, K has an infinite class field tower.

For an odd prime p, take any n + 1 distinct prime numbers q1, ... , qn+1 congruent to 1 modulo p.
Let Li = Q(ζqi ) be the qi -th cyclotomic field and let Ki be the unique subfield of Li that has degree p
over Q. Let L = L1 · · · Ln+1 and M = K1 · · ·Kn+1. Since Li ∩Lj = Q for i ̸= j , Gal(L/Q) ∼=

⊕
Gal(Li/Q),

and hence Gal(M/Q) ∼=
⊕

Gal(Ki/Q) ∼= (Z/pZ)n+1. Clearly, Gal(M/Q) has a subgroup of index p which
does not contain Gal(Ki/Q) for any i . The field K fixed by this subgroup has index p over Q and is not
contained in the compositum of any proper subset of {K1, ... ,Kn+1}. One could see that the fields KKi are
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unramified over K , and hence their compositum M is also unramified over K . In addition M/K is abelian
with Galois group Gal(M/K ) ∼= (Z/pZ)n. Then, we must have M ⊆ H(K ). Using again the correspondence
between quotients and subgroups of a finite abelian group, we deduce that Gal(H(K )/K ) has a subgroup
isomorphic to (Z/pZ)n. This shows that ρp(K ) = dimFp(Cl(K )[p]) ≥ n (again, one could show that the
equality holds). For any n > 2+ 2

√
p + 1, the field K defined above has an infinite p-class field tower and

thus cannot be embedded in a greater number field with class number 1.
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Resum (CAT)
En aquest article considerem una modificació del passeig aleatori simple, el Lazy

Random Walk, i constrüım una faḿılia de processos estocàstics a partir d’aquest

procés que convergeix feblement cap a un moviment Brownià estàndard en una

dimensió.

Abstract (ENG)
In this paper we consider a modification of the simple random walk, the Lazy

Random Walk, and construct a family of stochastic processes from the latter that

converges weakly to a standard one-dimensional Brownian motion.
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